skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fan, Daidu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study presents field observations of fluid mud and the flow instabilities that result from the interaction between mud-induced density stratification and current shear. Data collected by shipborne and bottom-mounted instruments in a hyperturbid estuarine tidal channel reveal the details of turbulent sheared layers in the fluid mud that persist throughout the tidal cycle. Shear instabilities form during periods of intense shear and strong mud-induced stratification, particularly with gradient Richardson number smaller than or fluctuating around the critical value of 0.25. Turbulent mixing plays a significant role in the vertical entrainment of fine sediment over the tidal cycle. The vertical extent of the billows identified seen in the acoustic images is the basis for two useful parameterizations. First, the aspect ratio (billow height/wavelength) is indicative of the initial Richardson number that characterizes the shear flow from which the billows grew. Second, we describe a scaling for the turbulent dissipation rate ε that holds for both observed and simulated Kelvin–Helmholtz billows. Estimates for the present observations imply, however, that billows growing on a lutocline obey an altered scaling whose origin remains to be explained. 
    more » « less
  2. Aquaculture of the eastern oyster, Crassostrea virginica , is an expanding industry in the US, particularly in the Gulf of Maine. High resolution ocean color satellites launched in the last decade potentially provide aquaculture-relevant water-quality parameters at farm scales. However, these parameters, such as temperature, suspended particulate matter (SPM), and Chlorophyll a (Chl a), need to be derived by interested users. Water quality parameters are derived first by applying an atmospheric correction and then estimating the target parameter with a specific algorithm. Here, we use five atmospheric correction schemes and two algorithms to derive SPM and Chl a from the Sentinel 2A&B satellites’ multispectral instrument data. The best estimates of SPM and Chl a are determined by comparison with in situ observations from buoys. Together with SST from Landsat-8, we estimated an Oyster Suitability Index (OSI) along the transects in five estuaries in the Gulf of Maine as well as applied a novel particulate organic matter algorithm, a function of Chl a and SPM in low turbidity estuaries. We then apply the optimal approaches to derive water quality parameters to study five different estuaries in Maine and find that existing high-yield oyster aquaculture farms are found in areas with elevated OSI values. Additionally, we suggest new areas, currently under-exploited, where oyster aquaculture is likely to succeed, showcasing the utility of the approach. 
    more » « less
  3. Abstract The flux Richardson numberRf, also called the mixing efficiency of stratified turbulence, is important in determining geophysical flow phenomena such as ocean circulation and air‐sea transports. MeasuringRfin the field is usually difficult, thus parameterization ofRfbased on readily observed properties is essential. Here, estimates ofRfin a strongly turbulent, sediment‐stratified estuarine flow are obtained from measurements of covariance‐derived turbulent buoyancy fluxes (B) and spectrally fitted values of the dissipation rate of turbulent kinetic energy (ε). We test scalings forRfin terms of the buoyancy Reynolds number (Reb), the gradient Richardson number (Ri), and turbulent Froude number (Frt). Neither theReb‐based nor theRi‐based scheme is able to describe the observed variations inRf, but theFrt‐based parameterization works well. These findings support further use of theFrt‐ based parameterization in turbulent oceanic and estuarine environments. 
    more » « less